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The transverse Hall coefficient of thin monocrystalline films RHF is derived from the 
recently presented bidimensional conduction model by introducing a term in the 
Boltzmann equation representing the effective mean free path. Numerical evaluations of 
R~F show that the size effect in RHF is less marked than that in resistivity and is much 
more sensitive to grain-boundary scattering than it is to external-surface scattering. Good 
agreement with the results from the previous experiments of several authors is found. 

1. I n t r o d u c t i o n  
The effect of external surfaces on the Hall coef- 
ficient RHF of thin metal films subjected to a 
transverse magnetic field has been studied by 
many investigators [1 -16] ,  for the case of both 
polycrystalline and monocrystalline thin films. 
However, to our knowledge at present, no theore- 
tical calculations have been undertaken of the con- 
ductivity and the Hall coefficient for a thin 
monocrystalline film placed in a transverse mag- 
netic field when three types of  electron scattering 
mechanisms are simultaneously operative, i.e. 
isotropic background scattering due to phonons 
and point defects, grain-boundary scattering and 
external-surface scattering. 

In the absence of a magnetic field Mayadas and 
Shatzkes have proposed a conduction model [17] 
for monocrystaUine films and polycrystalline films 
of constant grain size. However, this model is in- 
adequate to describe the transport phenomena in 
presence of a transverse magnetic field because it 
assumes that only the grain-boundaries perpendi- 
cular to the applied electric field should be con- 
sidered in calculations [17]; thus the Mayadas- 
Shatzkes model is, in practice, a one-dimensional 
model. Recently a study [18] has been devoted 
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to a consideration of the theoretical electrical 
resistivity, due to the electron scattering both on 
external surfaces and on grain-boundaries; the 
grain-boundaries were represented by two series of  
planar potentials orientated respectively perpen- 
dicular to the x- and y-axes, the film surfaces being 
parallel to the plane determined by x- andy-axes. 

In this paper an attempt is made to derive 
analytical expressions for the Hall coefficient RHF 
and the conductivity OF of monocrystalline films 
whose grains exhibit a cubic shape by using a hi- 
dimensional conduction model [18] and by 
solving the Boltzmann equation determined using 
a mean free path method [19-21]  under the 
application of a transverse magnetic field. 

2. Theory 
2.1. The effective relaxation time 
In the absence of a magnetic field the transport 
properties-of a thin monocrystalline film may be 
treated, to a good approximation, by a simple 
model [18] which states that in the case of  a 
nearly-specular scattering on external surfaces (p > 
0.5 where p is the specularity parameter) an effec- 
tive mean free path, lerf, may be defined which is 
given by 
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I /elf = lo l + - - - - I c o s 0 1 "  --  (1) 
p 

for the geometry shown in Fig. 1. 
Thus the effective relaxation time, re,f, which 

described the effects of  simultaneous background, 
grain-boundary and external-surface scatterings 
can be writ ten as 

I o .  1 + - - - - I c o s 0 1 "  - -  , Teff = V /) 

= Ierr" v -1 (2) 

where lo and v are, respectively, the background 
mean free path and electron velocity, c is a 
constant equal to 4/rr; v and p are related to grain 
size, ag, transmission coefficient through grain- 
boundaries, t, film thickness a, specularity para- 
meter,  p,  and mean free path, lo, by equations: 

ag 
= ; ( 3 )  

,0 

a 
p - . ( 4 )  ,o.ln(1) 

2.2.  So lv in9  t h e  B o l t z m a n n  e q u a t i o n  
Consider a monocrystalline film with surfaces 
parallel to the x - y  plane subjected to an electric 
field (El.,, E r ,  0) in the plane of the film and to a 
transverse magnetic field (0, 0, H )  (Fig. 1); follow- 
ing similar lines to that of  previous approaches 
[ 19-21  ] ,  the appropriate Boltzmann equation can 
be written in the form: 

vy Ovy] Tef f ITI ~V x - -  v x  

0,o 1 
e E x  + Ey  , (5) 

where f0  is the Fermi function a n d f  a is the devi- 
ation of electron distribution f ;  - e and Vx,  vu are 
the electron charge and the x- and y-components  
of the velocity v. 

In order to solve the Boltzmann equation we 
put [19, 22] 

3j 'o 
f t  = (v  x c i  + vy c2)  3 v '  (6) 

where c l and e2 do not depend explicitely on v= 
and vy and we introduce the complex quantities 

[171  
g = cl - i c 2  ; (7) 

F = E x - - i E y .  (8) 

Then Equation 5 becomes 

g v e 
- -  + i - - g  = - - F .  ( 9 )  
Tef f r m v  

It may be noted that  the form of the effective 
mean free path (Equation 1) shows that the 
assumptions made about cl and c2 are realistic 
moreover the above analysis supposes that c g  -1 - -  

p-a is not equal to zero. 
Introducing the parameter ~ = lo r-1 , where r is 

the radius of  a free electron orbit in a magnetic 
field such that 

m y  

r - e l l '  (10) 

we then find for the general solution of  Equation 9 
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Figure  1 G e o m e t l y  of  the model.  
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e lo [Ex (/3 + b I cos 0 I) - ~Ey] -- i [Ey (/3 + b [ cos 0 I) + OtEx ] 
g = m y 2 "  [ /3+blcos0[]2 + a  2 

(11) 

with 

and 

/3-- 1 + c 2 p-1 (12) 

b = p -1 - -v  -1 c. (13) 

2.3. The  electrical conduc t iv i t y  
Introducing the polar co-ordinates (v, 0, 4~)where 
Vz = v cos 0, the expressions for the total current 
densities in the x- and y-directions, Jx and J r ,  can 
be written as 

3 
( m )  v4~: 7r Jx = 2e ~ cos2r dO 

x Cl sin 3 0 dO (14) 

and 

Jv m I -27r sin z r de  = 2 e  ~ V4Jo 

X C2 sin 3 0 dO. (15) 

and 

Integration over 0 and r gives 

3 
Jx = ~Oo (A "E x - a B ' E y )  (16) 

3 
J~, = - ~ o o ( A ' E y + a B ' E x )  (17) 

with 

xln 

and 

A = -  -- + ~ +  +bZ 
b b 2 b 2 

1 + a2 +/32 ] -- ~ arctan a2 + 13 (/3 + b) 

(18) 

1 _ 1 +  In 1 +  82 +/32 B = ~  

b 2 + 82 __/32 b a  ] 
+ ab 2 arctan 82 +/3 (/3 + b) ] (19) I 

Oo is the background conductivity which is ex- 
pressed as 

n e 2 lo 
Oo - ( 2 0 )  

m y  

The electrical conductivity, OF, of the mono- 
crystalline film could be calculated according to 
the definition [22, 23] 

�9 Ix (21) 
OF = Ex 

J y = 0  
which yields 

O_F = 3 A 2  + a 2 B  2 
;b 4= 0. (22) 

ao 2 A 

2.4. The Hall coefficient, RHF 
The Hall coefficient of a thin monocrystalline 
trim is defined by [22, 23] : 

Er Jr  (23) R H F  = H" Jx = O. 

Equations 16 and 17 then give 

2 aB  
RHF = - - 3 -  O 0 "H" [A 2 + a 2 B 2] " (24) 

As it is well-known that in the flee-electron 
model the Hall coefficient RHo of the bulk metal 
is related to the number of free-electrons, n, by 
the following relation [3, 19, 22, 24] : 

RHO = -- 1In e, (25) 

the ratio RnF[RHo of the Hall coefficient of a 
thin monocrystalline film to that of the bulk 
material may be written in the final form: 

2 B 
RItF/Rt to  = -~ A 2 + 8 2 B 2 ;  b--/:O, (26) 

2.5. The particular case of b = 0 
For thin monocrystalline films of thicknesss such 
as to give 

p = vie (27) 

the expressions of the current densities reduce to 

3 fTr (3Ex--aE~, 
Jx = ~Oo  o t32 +or 2 sin 3 0 d 0  (28) 
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Figure 2 Variations in reduced Hall 
coefficient, RHF/RHo , and reduced 
conductivity, OF~go, with reduced 
thickness, k, for a =  1,p = 0.5 and a 
set of values for t. 

and 

3 ~ /3Ey + aEx  
Jy = ~-Oo~ /32 + a 2  sin 3 0 d0. (29) 

Hence, 

and 

OF/e0 = /3-1; b = 0 (30) 

RHF/RHO = 1;b = 0. (31) 

Numerical values of RHF/RHo and OV/O0 can 
be evaluated with the aid of  a pocket calculator. 
One main feature is shown by the variations of  

RHv/RHo and oF~go with reduced film thickness 
k (Figs 2 and 3): the reduced Hall coefficient is al- 
most equal to 1 in a large range of  values for k 
(error less than 10% for p = 0.5, t~< 0.9 and 

k ~>0.1). 
It can then be predicted that no size effect in 

the Hall coefficient can be attributed to the limi- 
tation of  the electronic mean free path by the 

monocrystalline film surfaces when the film thick- 
ness is larger than the half bulk mean free path. 
Furthermore, the size effect in conductivity is 
much more marked that the size effect in Hall co- 
efficient for any thickness. 

3 .  D i s c u s s i o n  

This feature agrees with the experimental constant 
value of  RHr- in A1 monocrystalline films prepared 
by chemical reduction [11] ;i t  is also in agreement 
with data related to evaporated films [25].  

It has been generally reported that the Hall co- 
efficient of  Cu films is roughly thickness indepen- 
dent above a thickness of  20 nm [4],  30 nm [26] 
or 4 0 n m  [9]. Kinbara et al. [4] reported that a 
marked deviation from the constant value of  RH 
occurred for very thin films (for thickness 
< 20nm)  and suggested that the origin of  this 
deviation was caused by lattice defects, which is 
not in agreement with the negligible effect of  grain 
boundaries. An alternative justification could be 
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Figure 3 Variations in reduced Hall 
coefficient, RHF/RHo , and reduced 
conductivity, oF~go, with reduced 
thickness, k, for p = 0.5, t = 0.8 and 
a set of values for a. 
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the existence of vacancies whose density is thick- 

ness-dependent; hence the size-dependence of  re- 

sistivity and the deviation from the bulk value can 

be understood; the fact that irreversible changes 

occur in RrI and resistivity for very thin fdms left 

in the vacuum system could then be attributed to 

an apparent decrease in the density of  carriers, 

which agrees with the observed [9] increase in 

resistivity but not with the observed increase in 

Hall coefficient. 

In the case of  antimony films [10] deposited 

on a substrate heated at 100 or 150 ~ C, the vari- 

ations in resistivity with thickness could corres- 

pond to a monocrystalline structure and the ob- 

served variations [10] in the Hall coefficient with 

thickness can be neglected from a statistical point 

of view. 

The observed variations in resistivity with thick- 

ness of  bismuth films [3, 5, 14] have a marked 

magnitude for film thicknesses larger than 

100nm and can be attributed to the usual size 

effect when assuming that the bulk mean free 

path takes a value near 1400nm, no marked 

variation is observed in the Hall coefficient at 

room temperature [3, 5, 14, 27, 28],  in accord 

with the predictions of  the theoretical approach. 

However in some cases [8, 28] a marked thick- 

ness-dependent of  Hall coefficient is observed but 

experimental evidence has been given [8] for the 

existence of  impurities in Cu films [8] ; in the case 

of Bi films [28], it was suggested that grain- 

boundary scattering was the origin of  the size 

effects; this assumption could agree with the above 

theoretical predictions since the experiments were 

performed at 4.2 K; nevertheless since Shubnikov-  

de Haas oscillations were observed [28] only 

qualitative agreement can be considered. 

4. Conclusion 
In the presence of a transverse magnetic field the 

Hall coefficient of  thin monocrystalline films can 

be calculated from a bidimensional conduction 

model [18] in which an effective relaxation time 

describes the effects of  simultaneous background, 

grain-boundary and external-surface scatterings. 

Theoretical expressions agree with experimental 

data on Cu, Ag, Sb and Bi thin films. 
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